GPU: format and cast float
This commit is contained in:
@@ -43,14 +43,15 @@ in XBRTable xbrTable;
|
||||
out vec4 FragColor;
|
||||
|
||||
void main() {
|
||||
vec4 c;
|
||||
vec4 c;
|
||||
|
||||
if (samplingMode == SAMPLING_DEFAULT)
|
||||
c = texture(tex, TexCoord);
|
||||
else if (samplingMode == SAMPLING_CATROM || samplingMode == SAMPLING_MITCHELL)
|
||||
c = textureCubic(tex, TexCoord, samplingMode);
|
||||
else if (samplingMode == SAMPLING_XBR)
|
||||
c = textureXBR(tex, TexCoord, xbrTable, ceil(1.0 * targetDimensions.x / sourceDimensions.x));
|
||||
if (samplingMode == SAMPLING_DEFAULT) {
|
||||
c = texture(tex, TexCoord);
|
||||
} else if (samplingMode == SAMPLING_CATROM || samplingMode == SAMPLING_MITCHELL) {
|
||||
c = textureCubic(tex, TexCoord, samplingMode);
|
||||
} else if (samplingMode == SAMPLING_XBR) {
|
||||
c = textureXBR(tex, TexCoord, xbrTable, ceil(1.0 * targetDimensions.x / sourceDimensions.x));
|
||||
}
|
||||
|
||||
FragColor = c;
|
||||
FragColor = c;
|
||||
}
|
||||
|
||||
@@ -24,70 +24,71 @@
|
||||
*/
|
||||
|
||||
// General case cubic filter
|
||||
float cubic_custom(float x, float b, float c)
|
||||
{
|
||||
/* A generalized cubic filter as described by Mitchell and Netravali is defined by the piecewise equation:
|
||||
* if abs(x) < 1
|
||||
* y = 1/6 * ( (12 - 9b - 6c) * abs(x)^3 + (-18 + 12b + 6c) * abs(x)^2 + (6 - 2b) )
|
||||
* if abs(x) >= 1 and < 2
|
||||
* y = 1/6 * ( (-1b - 6c) * abs(x)^3 + (6b + 30c) * abs(x)^2 + (-12b - 48c) * abs(x) + (8b + 24c) )
|
||||
* otherwise
|
||||
* y = 0
|
||||
* This produces a bell curve centered on 0 with a width of 2.
|
||||
*/
|
||||
float cubic_custom(float x, float b, float c) {
|
||||
/* A generalized cubic filter as described by Mitchell and Netravali is defined by the piecewise equation:
|
||||
* if abs(x) < 1
|
||||
* y = 1/6 * ( (12 - 9b - 6c) * abs(x)^3 + (-18 + 12b + 6c) * abs(x)^2 + (6 - 2b) )
|
||||
* if abs(x) >= 1 and < 2
|
||||
* y = 1/6 * ( (-1b - 6c) * abs(x)^3 + (6b + 30c) * abs(x)^2 + (-12b - 48c) * abs(x) + (8b + 24c) )
|
||||
* otherwise
|
||||
* y = 0
|
||||
* This produces a bell curve centered on 0 with a width of 2.
|
||||
*/
|
||||
|
||||
float t = abs(x); // absolute value of the x coordinate
|
||||
float t2 = t * t; // t squared
|
||||
float t3 = t * t * t; // t cubed
|
||||
float t = abs(x); // absolute value of the x coordinate
|
||||
float t2 = t * t; // t squared
|
||||
float t3 = t * t * t; // t cubed
|
||||
|
||||
if (t < 1) // This part defines the [-1,1] region of the curve.
|
||||
return 1.0/6 * ( (12 - 9 * b - 6 * c) * t3 + (-18 + 12 * b + 6 * c) * t2 + (6 - 2 * b) );
|
||||
else if (t < 2) // This part defines the [-2,-1] and [1,2] regions.
|
||||
return 1.0/6 * ( (-1 * b - 6 * c) * t3 + (6 * b + 30 * c) * t2 + (-12 * b - 48 * c) * t + (8 * b + 24 * c) );
|
||||
else // Outside of [-2,2], the value is 0.
|
||||
return 0;
|
||||
if (t < 1) { // This part defines the [-1,1] region of the curve.
|
||||
return 1.0/6 * ((12 - 9 * b - 6 * c) * t3 + (-18 + 12 * b + 6 * c) * t2 + (6 - 2 * b));
|
||||
} else if (t < 2) { // This part defines the [-2,-1] and [1,2] regions.
|
||||
return 1.0/6 * ((-1 * b - 6 * c) * t3 + (6 * b + 30 * c) * t2 + (-12 * b - 48 * c) * t + (8 * b + 24 * c));
|
||||
}
|
||||
|
||||
// Outside of [-2,2], the value is 0.
|
||||
return float(0);
|
||||
}
|
||||
|
||||
// Cubic filter with Catmull-Rom parameters
|
||||
float catmull_rom(float x)
|
||||
{
|
||||
/*
|
||||
* Generally favorable results in image upscaling are given by a cubic filter with the values b = 0 and c = 0.5.
|
||||
* This is known as the Catmull-Rom filter, and it closely approximates Jinc upscaling with Lanczos input values.
|
||||
* Placing these values into the piecewise equation gives us a more compact representation of:
|
||||
* y = 1.5 * abs(x)^3 - 2.5 * abs(x)^2 + 1 // abs(x) < 1
|
||||
* y = -0.5 * abs(x)^3 + 2.5 * abs(x)^2 - 4 * abs(x) + 2 // 1 <= abs(x) < 2
|
||||
*/
|
||||
float catmull_rom(float x) {
|
||||
/*
|
||||
* Generally favorable results in image upscaling are given by a cubic filter with the values b = 0 and c = 0.5.
|
||||
* This is known as the Catmull-Rom filter, and it closely approximates Jinc upscaling with Lanczos input values.
|
||||
* Placing these values into the piecewise equation gives us a more compact representation of:
|
||||
* y = 1.5 * abs(x)^3 - 2.5 * abs(x)^2 + 1 // abs(x) < 1
|
||||
* y = -0.5 * abs(x)^3 + 2.5 * abs(x)^2 - 4 * abs(x) + 2 // 1 <= abs(x) < 2
|
||||
*/
|
||||
|
||||
float t = abs(x);
|
||||
float t2 = t * t;
|
||||
float t3 = t * t * t;
|
||||
float t = abs(x);
|
||||
float t2 = t * t;
|
||||
float t3 = t * t * t;
|
||||
|
||||
if (t < 1)
|
||||
return 1.5 * t3 - 2.5 * t2 + 1;
|
||||
else if (t < 2)
|
||||
return -0.5 * t3 + 2.5 * t2 - 4 * t + 2;
|
||||
else
|
||||
return 0;
|
||||
if (t < 1) {
|
||||
return 1.5 * t3 - 2.5 * t2 + 1;
|
||||
} else if (t < 2) {
|
||||
return -0.5 * t3 + 2.5 * t2 - 4 * t + 2;
|
||||
}
|
||||
|
||||
return float(0);
|
||||
}
|
||||
|
||||
float mitchell(float x)
|
||||
{
|
||||
/*
|
||||
* This is another cubic filter with less aggressive sharpening than Catmull-Rom, which some users may prefer.
|
||||
* B = 1/3, C = 1/3.
|
||||
*/
|
||||
float mitchell(float x) {
|
||||
/*
|
||||
* This is another cubic filter with less aggressive sharpening than Catmull-Rom, which some users may prefer.
|
||||
* B = 1/3, C = 1/3.
|
||||
*/
|
||||
|
||||
float t = abs(x);
|
||||
float t2 = t * t;
|
||||
float t3 = t * t * t;
|
||||
float t = abs(x);
|
||||
float t2 = t * t;
|
||||
float t3 = t * t * t;
|
||||
|
||||
if (t < 1)
|
||||
return 7.0/6 * t3 + -2 * t2 + 8.0/9;
|
||||
else if (t < 2)
|
||||
return -7.0/18 * t3 + 2 * t2 - 10.0/3 * t + 16.0/9;
|
||||
else
|
||||
return 0;
|
||||
if (t < 1) {
|
||||
return 7.0/6 * t3 + -2 * t2 + 8.0/9;
|
||||
} else if (t < 2) {
|
||||
return -7.0/18 * t3 + 2 * t2 - 10.0/3 * t + 16.0/9;
|
||||
}
|
||||
|
||||
return float(0);
|
||||
}
|
||||
|
||||
#define CR_AR_STRENGTH 0.9
|
||||
@@ -96,82 +97,74 @@ float mitchell(float x)
|
||||
#define FLT_MIN 1.175494351e-38
|
||||
|
||||
// Calculates the distance between two points
|
||||
float d(vec2 pt1, vec2 pt2)
|
||||
{
|
||||
vec2 v = pt2 - pt1;
|
||||
return sqrt(dot(v,v));
|
||||
float d(vec2 pt1, vec2 pt2) {
|
||||
vec2 v = pt2 - pt1;
|
||||
return sqrt(dot(v,v));
|
||||
}
|
||||
|
||||
// Samples a texture using a 4x4 kernel.
|
||||
vec4 textureCubic(sampler2D sampler, vec2 texCoords, int mode){
|
||||
vec2 texSize = textureSize(sampler, 0);
|
||||
vec2 texelSize = 1.0 / texSize;
|
||||
texCoords *= texSize;
|
||||
texCoords -= 0.5;
|
||||
vec2 texSize = textureSize(sampler, 0);
|
||||
vec2 texelSize = 1.0 / texSize;
|
||||
texCoords *= texSize;
|
||||
texCoords -= 0.5;
|
||||
|
||||
vec4 nSum = vec4( 0.0, 0.0, 0.0, 0.0 );
|
||||
vec4 nDenom = vec4( 0.0, 0.0, 0.0, 0.0 );
|
||||
vec4 nSum = vec4( 0.0, 0.0, 0.0, 0.0 );
|
||||
vec4 nDenom = vec4( 0.0, 0.0, 0.0, 0.0 );
|
||||
|
||||
ivec2 texelCoords = ivec2(floor(texCoords));
|
||||
vec2 coordFract = fract(texCoords);
|
||||
ivec2 texelCoords = ivec2(floor(texCoords));
|
||||
vec2 coordFract = fract(texCoords);
|
||||
|
||||
vec4 c;
|
||||
vec4 c;
|
||||
|
||||
if (mode == SAMPLING_CATROM)
|
||||
{
|
||||
// catrom benefits from anti-ringing, which requires knowledge of the minimum and maximum samples in the kernel
|
||||
vec4 min_sample = vec4(FLT_MAX);
|
||||
vec4 max_sample = vec4(FLT_MIN);
|
||||
for (int m = -1; m <= 2; m++)
|
||||
{
|
||||
for (int n = -1; n <= 2; n++)
|
||||
{
|
||||
// get the raw texel, bypassing any other filters
|
||||
vec4 vecData = texelFetch(sampler, texelCoords + ivec2(m, n), 0);
|
||||
if (mode == SAMPLING_CATROM) {
|
||||
// catrom benefits from anti-ringing, which requires knowledge of the minimum and maximum samples in the kernel
|
||||
vec4 min_sample = vec4(FLT_MAX);
|
||||
vec4 max_sample = vec4(FLT_MIN);
|
||||
for (int m = -1; m <= 2; m++) {
|
||||
for (int n = -1; n <= 2; n++) {
|
||||
// get the raw texel, bypassing any other filters
|
||||
vec4 vecData = texelFetch(sampler, texelCoords + ivec2(m, n), 0);
|
||||
|
||||
// update min and max as we go
|
||||
min_sample = min(min_sample, vecData);
|
||||
max_sample = max(max_sample, vecData);
|
||||
// update min and max as we go
|
||||
min_sample = min(min_sample, vecData);
|
||||
max_sample = max(max_sample, vecData);
|
||||
|
||||
// calculate weight based on distance of the current texel offset from the sub-texel position of the sampling location
|
||||
float w = catmull_rom( d(vec2(m, n), coordFract) );
|
||||
// calculate weight based on distance of the current texel offset from the sub-texel position of the sampling location
|
||||
float w = catmull_rom( d(vec2(m, n), coordFract) );
|
||||
|
||||
// build the weighted average
|
||||
nSum += vecData * w;
|
||||
nDenom += w;
|
||||
}
|
||||
}
|
||||
// calculate weighted average
|
||||
c = nSum / nDenom;
|
||||
|
||||
// store value before anti-ringing
|
||||
vec4 aux = c;
|
||||
// anti-ringing: clamp the color value so that it cannot exceed values already present in the kernel area
|
||||
c = clamp(c, min_sample, max_sample);
|
||||
// mix according to anti-ringing strength
|
||||
c = mix(aux, c, CR_AR_STRENGTH);
|
||||
// build the weighted average
|
||||
nSum += vecData * w;
|
||||
nDenom += w;
|
||||
}
|
||||
}
|
||||
else if (mode == SAMPLING_MITCHELL)
|
||||
{
|
||||
for (int m = -1; m <= 2; m++)
|
||||
{
|
||||
for (int n = -1; n <= 2; n++)
|
||||
{
|
||||
// get the raw texel, bypassing any other filters
|
||||
vec4 vecData = texelFetch(sampler, texelCoords + ivec2(m, n), 0);
|
||||
// calculate weighted average
|
||||
c = nSum / nDenom;
|
||||
|
||||
// calculate weight based on distance of the current texel offset from the sub-texel position of the sampling location
|
||||
float w = mitchell( d(vec2(m, n), coordFract) );
|
||||
// store value before anti-ringing
|
||||
vec4 aux = c;
|
||||
// anti-ringing: clamp the color value so that it cannot exceed values already present in the kernel area
|
||||
c = clamp(c, min_sample, max_sample);
|
||||
// mix according to anti-ringing strength
|
||||
c = mix(aux, c, CR_AR_STRENGTH);
|
||||
} else if (mode == SAMPLING_MITCHELL) {
|
||||
for (int m = -1; m <= 2; m++) {
|
||||
for (int n = -1; n <= 2; n++) {
|
||||
// get the raw texel, bypassing any other filters
|
||||
vec4 vecData = texelFetch(sampler, texelCoords + ivec2(m, n), 0);
|
||||
|
||||
// build the weighted average
|
||||
nSum += vecData * w;
|
||||
nDenom += w;
|
||||
}
|
||||
}
|
||||
// calculate weighted average
|
||||
c = nSum / nDenom;
|
||||
// calculate weight based on distance of the current texel offset from the sub-texel position of the sampling location
|
||||
float w = mitchell( d(vec2(m, n), coordFract) );
|
||||
|
||||
// build the weighted average
|
||||
nSum += vecData * w;
|
||||
nDenom += w;
|
||||
}
|
||||
}
|
||||
// calculate weighted average
|
||||
c = nSum / nDenom;
|
||||
}
|
||||
|
||||
// return the weighted average
|
||||
return c;
|
||||
// return the weighted average
|
||||
return c;
|
||||
}
|
||||
|
||||
@@ -24,14 +24,13 @@
|
||||
Incorporates some of the ideas from SABR shader. Thanks to Joshua Street.
|
||||
*/
|
||||
|
||||
struct XBRTable
|
||||
{
|
||||
vec2 texCoord;
|
||||
vec4 t1;
|
||||
vec4 t2;
|
||||
vec4 t3;
|
||||
vec4 t4;
|
||||
vec4 t5;
|
||||
vec4 t6;
|
||||
vec4 t7;
|
||||
struct XBRTable {
|
||||
vec2 texCoord;
|
||||
vec4 t1;
|
||||
vec4 t2;
|
||||
vec4 t3;
|
||||
vec4 t4;
|
||||
vec4 t5;
|
||||
vec4 t6;
|
||||
vec4 t7;
|
||||
};
|
||||
@@ -48,200 +48,185 @@
|
||||
const vec3 rgbw = vec3(14.352, 28.176, 5.472); // rgb weights
|
||||
//const vec4 eq_threshold = vec4(15.0, 15.0, 15.0, 15.0); // unused
|
||||
|
||||
const vec4 Ao = vec4( 1.0, -1.0, -1.0, 1.0 );
|
||||
const vec4 Bo = vec4( 1.0, 1.0, -1.0,-1.0 );
|
||||
const vec4 Co = vec4( 1.5, 0.5, -0.5, 0.5 );
|
||||
const vec4 Ax = vec4( 1.0, -1.0, -1.0, 1.0 );
|
||||
const vec4 Bx = vec4( 0.5, 2.0, -0.5,-2.0 );
|
||||
const vec4 Cx = vec4( 1.0, 1.0, -0.5, 0.0 );
|
||||
const vec4 Ay = vec4( 1.0, -1.0, -1.0, 1.0 );
|
||||
const vec4 By = vec4( 2.0, 0.5, -2.0,-0.5 );
|
||||
const vec4 Cy = vec4( 2.0, 0.0, -1.0, 0.5 );
|
||||
const vec4 Ci = vec4(0.25, 0.25, 0.25, 0.25);
|
||||
const vec4 Ao = vec4( 1.0, -1.0, -1.0, 1.0 );
|
||||
const vec4 Bo = vec4( 1.0, 1.0, -1.0,-1.0 );
|
||||
const vec4 Co = vec4( 1.5, 0.5, -0.5, 0.5 );
|
||||
const vec4 Ax = vec4( 1.0, -1.0, -1.0, 1.0 );
|
||||
const vec4 Bx = vec4( 0.5, 2.0, -0.5,-2.0 );
|
||||
const vec4 Cx = vec4( 1.0, 1.0, -0.5, 0.0 );
|
||||
const vec4 Ay = vec4( 1.0, -1.0, -1.0, 1.0 );
|
||||
const vec4 By = vec4( 2.0, 0.5, -2.0,-0.5 );
|
||||
const vec4 Cy = vec4( 2.0, 0.0, -1.0, 0.5 );
|
||||
const vec4 Ci = vec4(0.25, 0.25, 0.25, 0.25);
|
||||
|
||||
const vec3 Y = vec3(0.2126, 0.7152, 0.0722); // rec.709 luma weights
|
||||
|
||||
// Difference between vector components.
|
||||
vec4 df(vec4 A, vec4 B)
|
||||
{
|
||||
return vec4(abs(A-B));
|
||||
vec4 df(vec4 A, vec4 B) {
|
||||
return vec4(abs(A-B));
|
||||
}
|
||||
|
||||
// Compare two vectors and return their components are different.
|
||||
vec4 diff(vec4 A, vec4 B)
|
||||
{
|
||||
return vec4(notEqual(A, B));
|
||||
vec4 diff(vec4 A, vec4 B) {
|
||||
return vec4(notEqual(A, B));
|
||||
}
|
||||
|
||||
// Determine if two vector components are equal based on a threshold.
|
||||
vec4 eq(vec4 A, vec4 B)
|
||||
{
|
||||
return (step(df(A, B), vec4(XBR_EQ_THRESHOLD)));
|
||||
vec4 eq(vec4 A, vec4 B) {
|
||||
return (step(df(A, B), vec4(XBR_EQ_THRESHOLD)));
|
||||
}
|
||||
|
||||
// Determine if two vector components are NOT equal based on a threshold.
|
||||
vec4 neq(vec4 A, vec4 B)
|
||||
{
|
||||
return (vec4(1.0, 1.0, 1.0, 1.0) - eq(A, B));
|
||||
vec4 neq(vec4 A, vec4 B) {
|
||||
return (vec4(1.0, 1.0, 1.0, 1.0) - eq(A, B));
|
||||
}
|
||||
|
||||
// Weighted distance.
|
||||
vec4 wd(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h)
|
||||
{
|
||||
return (df(a,b) + df(a,c) + df(d,e) + df(d,f) + 4.0*df(g,h));
|
||||
vec4 wd(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h) {
|
||||
return (df(a,b) + df(a,c) + df(d,e) + df(d,f) + 4.0*df(g,h));
|
||||
}
|
||||
|
||||
vec4 weighted_distance(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h, vec4 i, vec4 j, vec4 k, vec4 l)
|
||||
{
|
||||
return (df(a,b) + df(a,c) + df(d,e) + df(d,f) + df(i,j) + df(k,l) + 2.0*df(g,h));
|
||||
vec4 weighted_distance(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h, vec4 i, vec4 j, vec4 k, vec4 l) {
|
||||
return (df(a,b) + df(a,c) + df(d,e) + df(d,f) + df(i,j) + df(k,l) + 2.0*df(g,h));
|
||||
}
|
||||
|
||||
float c_df(vec3 c1, vec3 c2)
|
||||
{
|
||||
vec3 df = abs(c1 - c2);
|
||||
return df.r + df.g + df.b;
|
||||
float c_df(vec3 c1, vec3 c2) {
|
||||
vec3 df = abs(c1 - c2);
|
||||
return df.r + df.g + df.b;
|
||||
}
|
||||
|
||||
#include scale/xbr_lv2_common.glsl
|
||||
|
||||
|
||||
// xBR-level2 upscaler. Level 2 means it detects edges in 2 directions, instead of just 1 in the most basic form of the algorithm.
|
||||
// This improves quality by a good bit without adding too much complexity compared to available level-3 and level-4 algorithms.
|
||||
vec4 textureXBR(sampler2D image, vec2 texCoord, XBRTable t, float scale)
|
||||
{
|
||||
vec4 delta = vec4(1.0/scale, 1.0/scale, 1.0/scale, 1.0/scale);
|
||||
vec4 delta_l = vec4(0.5/scale, 1.0/scale, 0.5/scale, 1.0/scale);
|
||||
vec4 delta_u = delta_l.yxwz;
|
||||
vec4 textureXBR(sampler2D image, vec2 texCoord, XBRTable t, float scale) {
|
||||
vec4 delta = vec4(1.0/scale, 1.0/scale, 1.0/scale, 1.0/scale);
|
||||
vec4 delta_l = vec4(0.5/scale, 1.0/scale, 0.5/scale, 1.0/scale);
|
||||
vec4 delta_u = delta_l.yxwz;
|
||||
|
||||
vec2 textureDimensions = textureSize(image, 0);
|
||||
vec2 textureDimensions = textureSize(image, 0);
|
||||
|
||||
vec4 edri, edr, edr_l, edr_u, px; // px = pixel, edr = edge detection rule
|
||||
vec4 irlv0, irlv1, irlv2l, irlv2u, block_3d;
|
||||
vec4 fx, fx_l, fx_u; // inequations of straight lines.
|
||||
vec4 edri, edr, edr_l, edr_u, px; // px = pixel, edr = edge detection rule
|
||||
vec4 irlv0, irlv1, irlv2l, irlv2u, block_3d;
|
||||
vec4 fx, fx_l, fx_u; // inequations of straight lines.
|
||||
|
||||
vec2 fp = fract(texCoord*textureDimensions);
|
||||
vec2 fp = fract(texCoord*textureDimensions);
|
||||
|
||||
// A1 B1 C1
|
||||
// A0 A B C C4
|
||||
// D0 D E F F4
|
||||
// G0 G H I I4
|
||||
// G5 H5 I5
|
||||
vec4 A1 = texture(image, t.t1.xw );
|
||||
vec4 B1 = texture(image, t.t1.yw );
|
||||
vec4 C1 = texture(image, t.t1.zw );
|
||||
vec4 A = texture(image, t.t2.xw );
|
||||
vec4 B = texture(image, t.t2.yw );
|
||||
vec4 C = texture(image, t.t2.zw );
|
||||
vec4 D = texture(image, t.t3.xw );
|
||||
vec4 E = texture(image, t.t3.yw );
|
||||
vec4 F = texture(image, t.t3.zw );
|
||||
vec4 G = texture(image, t.t4.xw );
|
||||
vec4 H = texture(image, t.t4.yw );
|
||||
vec4 I = texture(image, t.t4.zw );
|
||||
vec4 G5 = texture(image, t.t5.xw );
|
||||
vec4 H5 = texture(image, t.t5.yw );
|
||||
vec4 I5 = texture(image, t.t5.zw );
|
||||
vec4 A0 = texture(image, t.t6.xy );
|
||||
vec4 D0 = texture(image, t.t6.xz );
|
||||
vec4 G0 = texture(image, t.t6.xw );
|
||||
vec4 C4 = texture(image, t.t7.xy );
|
||||
vec4 F4 = texture(image, t.t7.xz );
|
||||
vec4 I4 = texture(image, t.t7.xw );
|
||||
// A1 B1 C1
|
||||
// A0 A B C C4
|
||||
// D0 D E F F4
|
||||
// G0 G H I I4
|
||||
// G5 H5 I5
|
||||
vec4 A1 = texture(image, t.t1.xw );
|
||||
vec4 B1 = texture(image, t.t1.yw );
|
||||
vec4 C1 = texture(image, t.t1.zw );
|
||||
vec4 A = texture(image, t.t2.xw );
|
||||
vec4 B = texture(image, t.t2.yw );
|
||||
vec4 C = texture(image, t.t2.zw );
|
||||
vec4 D = texture(image, t.t3.xw );
|
||||
vec4 E = texture(image, t.t3.yw );
|
||||
vec4 F = texture(image, t.t3.zw );
|
||||
vec4 G = texture(image, t.t4.xw );
|
||||
vec4 H = texture(image, t.t4.yw );
|
||||
vec4 I = texture(image, t.t4.zw );
|
||||
vec4 G5 = texture(image, t.t5.xw );
|
||||
vec4 H5 = texture(image, t.t5.yw );
|
||||
vec4 I5 = texture(image, t.t5.zw );
|
||||
vec4 A0 = texture(image, t.t6.xy );
|
||||
vec4 D0 = texture(image, t.t6.xz );
|
||||
vec4 G0 = texture(image, t.t6.xw );
|
||||
vec4 C4 = texture(image, t.t7.xy );
|
||||
vec4 F4 = texture(image, t.t7.xz );
|
||||
vec4 I4 = texture(image, t.t7.xw );
|
||||
|
||||
vec4 b = vec4(dot(B.xyz ,rgbw), dot(D.xyz ,rgbw), dot(H.xyz ,rgbw), dot(F.xyz ,rgbw));
|
||||
vec4 c = vec4(dot(C.xyz ,rgbw), dot(A.xyz ,rgbw), dot(G.xyz ,rgbw), dot(I.xyz ,rgbw));
|
||||
vec4 d = b.yzwx;
|
||||
vec4 e = vec4(dot(E.xyz,rgbw));
|
||||
vec4 f = b.wxyz;
|
||||
vec4 g = c.zwxy;
|
||||
vec4 h = b.zwxy;
|
||||
vec4 i = c.wxyz;
|
||||
vec4 b = vec4(dot(B.xyz ,rgbw), dot(D.xyz ,rgbw), dot(H.xyz ,rgbw), dot(F.xyz ,rgbw));
|
||||
vec4 c = vec4(dot(C.xyz ,rgbw), dot(A.xyz ,rgbw), dot(G.xyz ,rgbw), dot(I.xyz ,rgbw));
|
||||
vec4 d = b.yzwx;
|
||||
vec4 e = vec4(dot(E.xyz,rgbw));
|
||||
vec4 f = b.wxyz;
|
||||
vec4 g = c.zwxy;
|
||||
vec4 h = b.zwxy;
|
||||
vec4 i = c.wxyz;
|
||||
|
||||
vec4 i4, i5, h5, f4;
|
||||
vec4 i4, i5, h5, f4;
|
||||
|
||||
float y_weight = XBR_Y_WEIGHT;
|
||||
float y_weight = XBR_Y_WEIGHT;
|
||||
|
||||
if (small_details < 0.5)
|
||||
{
|
||||
i4 = vec4(dot(I4.xyz,rgbw), dot(C1.xyz,rgbw), dot(A0.xyz,rgbw), dot(G5.xyz,rgbw));
|
||||
i5 = vec4(dot(I5.xyz,rgbw), dot(C4.xyz,rgbw), dot(A1.xyz,rgbw), dot(G0.xyz,rgbw));
|
||||
h5 = vec4(dot(H5.xyz,rgbw), dot(F4.xyz,rgbw), dot(B1.xyz,rgbw), dot(D0.xyz,rgbw));
|
||||
}
|
||||
else
|
||||
{
|
||||
i4 = mul( mat4x3(I4.xyz, C1.xyz, A0.xyz, G5.xyz), y_weight * Y );
|
||||
i5 = mul( mat4x3(I5.xyz, C4.xyz, A1.xyz, G0.xyz), y_weight * Y );
|
||||
h5 = mul( mat4x3(H5.xyz, F4.xyz, B1.xyz, D0.xyz), y_weight * Y );
|
||||
}
|
||||
if (small_details < 0.5) {
|
||||
i4 = vec4(dot(I4.xyz,rgbw), dot(C1.xyz,rgbw), dot(A0.xyz,rgbw), dot(G5.xyz,rgbw));
|
||||
i5 = vec4(dot(I5.xyz,rgbw), dot(C4.xyz,rgbw), dot(A1.xyz,rgbw), dot(G0.xyz,rgbw));
|
||||
h5 = vec4(dot(H5.xyz,rgbw), dot(F4.xyz,rgbw), dot(B1.xyz,rgbw), dot(D0.xyz,rgbw));
|
||||
} else {
|
||||
i4 = mul(mat4x3(I4.xyz, C1.xyz, A0.xyz, G5.xyz), y_weight * Y);
|
||||
i5 = mul(mat4x3(I5.xyz, C4.xyz, A1.xyz, G0.xyz), y_weight * Y);
|
||||
h5 = mul(mat4x3(H5.xyz, F4.xyz, B1.xyz, D0.xyz), y_weight * Y);
|
||||
}
|
||||
|
||||
// These inequations define the line below which interpolation occurs.
|
||||
fx = (Ao*fp.y+Bo*fp.x);
|
||||
fx_l = (Ax*fp.y+Bx*fp.x);
|
||||
fx_u = (Ay*fp.y+By*fp.x);
|
||||
// These inequations define the line below which interpolation occurs.
|
||||
fx = (Ao*fp.y+Bo*fp.x);
|
||||
fx_l = (Ax*fp.y+Bx*fp.x);
|
||||
fx_u = (Ay*fp.y+By*fp.x);
|
||||
|
||||
// corner detection
|
||||
irlv1 = irlv0 = diff(e,f) * diff(e,h);
|
||||
#ifdef CORNER_B
|
||||
irlv1 = (irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) );
|
||||
#endif
|
||||
#ifdef CORNER_D
|
||||
vec4 c1 = i4.yzwx;
|
||||
vec4 g0 = i5.wxyz;
|
||||
irlv1 = (irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) * (diff(f,f4) * diff(f,i) + diff(h,h5) * diff(h,i) + diff(h,g) + diff(f,c) + eq(b,c1) * eq(d,g0)));
|
||||
#endif
|
||||
#ifdef CORNER_C
|
||||
irlv1 = (irlv0 * ( neq(f,b) * neq(f,c) + neq(h,d) * neq(h,g) + eq(e,i) * (neq(f,f4) * neq(f,i4) + neq(h,h5) * neq(h,i5)) + eq(e,g) + eq(e,c)) );
|
||||
#endif
|
||||
// corner detection
|
||||
irlv1 = irlv0 = diff(e,f) * diff(e,h);
|
||||
#ifdef CORNER_B
|
||||
irlv1 = (irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) );
|
||||
#endif
|
||||
#ifdef CORNER_D
|
||||
vec4 c1 = i4.yzwx;
|
||||
vec4 g0 = i5.wxyz;
|
||||
irlv1 = (irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) * (diff(f,f4) * diff(f,i) + diff(h,h5) * diff(h,i) + diff(h,g) + diff(f,c) + eq(b,c1) * eq(d,g0)));
|
||||
#endif
|
||||
#ifdef CORNER_C
|
||||
irlv1 = (irlv0 * ( neq(f,b) * neq(f,c) + neq(h,d) * neq(h,g) + eq(e,i) * (neq(f,f4) * neq(f,i4) + neq(h,h5) * neq(h,i5)) + eq(e,g) + eq(e,c)) );
|
||||
#endif
|
||||
|
||||
// corner detection in the other direction
|
||||
irlv2l = diff(e,g) * diff(d,g);
|
||||
irlv2u = diff(e,c) * diff(b,c);
|
||||
// corner detection in the other direction
|
||||
irlv2l = diff(e,g) * diff(d,g);
|
||||
irlv2u = diff(e,c) * diff(b,c);
|
||||
|
||||
vec4 fx45i = clamp((fx + delta -Co - Ci)/(2.0*delta ), 0.0, 1.0);
|
||||
vec4 fx45 = clamp((fx + delta -Co )/(2.0*delta ), 0.0, 1.0);
|
||||
vec4 fx30 = clamp((fx_l + delta_l -Cx )/(2.0*delta_l), 0.0, 1.0);
|
||||
vec4 fx60 = clamp((fx_u + delta_u -Cy )/(2.0*delta_u), 0.0, 1.0);
|
||||
vec4 fx45i = clamp((fx + delta -Co - Ci)/(2.0*delta ), 0.0, 1.0);
|
||||
vec4 fx45 = clamp((fx + delta -Co )/(2.0*delta ), 0.0, 1.0);
|
||||
vec4 fx30 = clamp((fx_l + delta_l -Cx )/(2.0*delta_l), 0.0, 1.0);
|
||||
vec4 fx60 = clamp((fx_u + delta_u -Cy )/(2.0*delta_u), 0.0, 1.0);
|
||||
|
||||
vec4 wd1, wd2;
|
||||
if (small_details < 0.5)
|
||||
{
|
||||
wd1 = wd( e, c, g, i, h5, f4, h, f);
|
||||
wd2 = wd( h, d, i5, f, i4, b, e, i);
|
||||
}
|
||||
else
|
||||
{
|
||||
wd1 = weighted_distance( e, c, g, i, f4, h5, h, f, b, d, i4, i5);
|
||||
wd2 = weighted_distance( h, d, i5, f, b, i4, e, i, g, h5, c, f4);
|
||||
}
|
||||
vec4 wd1, wd2;
|
||||
if (small_details < 0.5) {
|
||||
wd1 = wd( e, c, g, i, h5, f4, h, f);
|
||||
wd2 = wd( h, d, i5, f, i4, b, e, i);
|
||||
} else {
|
||||
wd1 = weighted_distance( e, c, g, i, f4, h5, h, f, b, d, i4, i5);
|
||||
wd2 = weighted_distance( h, d, i5, f, b, i4, e, i, g, h5, c, f4);
|
||||
}
|
||||
|
||||
edri = step(wd1, wd2) * irlv0;
|
||||
edr = step(wd1 + vec4(0.1, 0.1, 0.1, 0.1), wd2) * step(vec4(0.5, 0.5, 0.5, 0.5), irlv1);
|
||||
edr_l = step( lv2_cf*df(f,g), df(h,c) ) * irlv2l * edr;
|
||||
edr_u = step( lv2_cf*df(h,c), df(f,g) ) * irlv2u * edr;
|
||||
edri = step(wd1, wd2) * irlv0;
|
||||
edr = step(wd1 + vec4(0.1, 0.1, 0.1, 0.1), wd2) * step(vec4(0.5, 0.5, 0.5, 0.5), irlv1);
|
||||
edr_l = step( lv2_cf*df(f,g), df(h,c) ) * irlv2l * edr;
|
||||
edr_u = step( lv2_cf*df(h,c), df(f,g) ) * irlv2u * edr;
|
||||
|
||||
fx45 = edr * fx45;
|
||||
fx30 = edr_l * fx30;
|
||||
fx60 = edr_u * fx60;
|
||||
fx45i = edri * fx45i;
|
||||
fx45 = edr * fx45;
|
||||
fx30 = edr_l * fx30;
|
||||
fx60 = edr_u * fx60;
|
||||
fx45i = edri * fx45i;
|
||||
|
||||
px = step(df(e,f), df(e,h));
|
||||
px = step(df(e,f), df(e,h));
|
||||
|
||||
#ifdef SMOOTH_TIPS
|
||||
vec4 maximos = max(max(fx30, fx60), max(fx45, fx45i));
|
||||
#endif
|
||||
#ifndef SMOOTH_TIPS
|
||||
vec4 maximos = max(max(fx30, fx60), fx45);
|
||||
#endif
|
||||
#ifdef SMOOTH_TIPS
|
||||
vec4 maximos = max(max(fx30, fx60), max(fx45, fx45i));
|
||||
#endif
|
||||
#ifndef SMOOTH_TIPS
|
||||
vec4 maximos = max(max(fx30, fx60), fx45);
|
||||
#endif
|
||||
|
||||
vec4 res1 = E;
|
||||
res1 = mix(res1, mix(H, F, px.x), maximos.x);
|
||||
res1 = mix(res1, mix(B, D, px.z), maximos.z);
|
||||
vec4 res1 = E;
|
||||
res1 = mix(res1, mix(H, F, px.x), maximos.x);
|
||||
res1 = mix(res1, mix(B, D, px.z), maximos.z);
|
||||
|
||||
vec4 res2 = E;
|
||||
res2 = mix(res2, mix(F, B, px.y), maximos.y);
|
||||
res2 = mix(res2, mix(D, H, px.w), maximos.w);
|
||||
vec4 res2 = E;
|
||||
res2 = mix(res2, mix(F, B, px.y), maximos.y);
|
||||
res2 = mix(res2, mix(D, H, px.w), maximos.w);
|
||||
|
||||
vec4 res = mix(res1, res2, step(c_df(E.xyz, res1.xyz), c_df(E.xyz, res2.xyz)));
|
||||
vec4 res = mix(res1, res2, step(c_df(E.xyz, res1.xyz), c_df(E.xyz, res2.xyz)));
|
||||
|
||||
return res;
|
||||
return res;
|
||||
}
|
||||
@@ -26,29 +26,28 @@
|
||||
|
||||
#include scale/xbr_lv2_common.glsl
|
||||
|
||||
XBRTable xbr_vert(vec2 texCoord, ivec2 sourceDimensions)
|
||||
{
|
||||
float dx = (1.0/sourceDimensions.x);
|
||||
float dy = (1.0/sourceDimensions.y);
|
||||
XBRTable xbr_vert(vec2 texCoord, ivec2 sourceDimensions) {
|
||||
float dx = (1.0/sourceDimensions.x);
|
||||
float dy = (1.0/sourceDimensions.y);
|
||||
|
||||
// Define coordinates to optimize later fetching of adjacent pixels
|
||||
// A1 B1 C1
|
||||
// A0 A B C C4
|
||||
// D0 D E F F4
|
||||
// G0 G H I I4
|
||||
// G5 H5 I5
|
||||
XBRTable tab = XBRTable(
|
||||
texCoord,
|
||||
texCoord.xxxy + vec4( -dx, 0, dx,-2.0*dy), // A1 B1 C1
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, -dy), // A B C
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, 0), // D E F
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, dy), // G H I
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, 2.0*dy), // G5 H5 I5
|
||||
texCoord.xyyy + vec4(-2.0*dx,-dy, 0, dy), // A0 D0 G0
|
||||
texCoord.xyyy + vec4( 2.0*dx,-dy, 0, dy) // C4 F4 I4
|
||||
);
|
||||
// Define coordinates to optimize later fetching of adjacent pixels
|
||||
// A1 B1 C1
|
||||
// A0 A B C C4
|
||||
// D0 D E F F4
|
||||
// G0 G H I I4
|
||||
// G5 H5 I5
|
||||
XBRTable tab = XBRTable(
|
||||
texCoord,
|
||||
texCoord.xxxy + vec4( -dx, 0, dx,-2.0*dy), // A1 B1 C1
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, -dy), // A B C
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, 0), // D E F
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, dy), // G H I
|
||||
texCoord.xxxy + vec4( -dx, 0, dx, 2.0*dy), // G5 H5 I5
|
||||
texCoord.xyyy + vec4(-2.0*dx,-dy, 0, dy), // A0 D0 G0
|
||||
texCoord.xyyy + vec4( 2.0*dx,-dy, 0, dy) // C4 F4 I4
|
||||
);
|
||||
|
||||
tab.texCoord.x *= 1.00000001;
|
||||
tab.texCoord.x *= 1.00000001;
|
||||
|
||||
return tab;
|
||||
return tab;
|
||||
}
|
||||
Reference in New Issue
Block a user