Files
agent-coordinator/README.md

662 lines
26 KiB
Markdown
Raw Blame History

# Agent Coordinator
A **Model Context Protocol (MCP) server** that enables multiple AI agents to coordinate their work seamlessly across codebases without conflicts. Built with Elixir for reliability and fault tolerance.
## 🎯 What is Agent Coordinator?
Agent Coordinator is a **unified MCP proxy server** that enables multiple AI agents to collaborate seamlessly without conflicts. As shown in the architecture diagram above, it acts as a single interface connecting multiple agents (Purple Zebra, Yellow Elephant, etc.) to a comprehensive ecosystem of tools and task management.
**The coordinator orchestrates three core components:**
- **Task Registry**: Intelligent task queuing, agent matching, and automatic progress tracking
- **Agent Manager**: Agent registration, heartbeat monitoring, and capability-based assignment
- **Codebase Registry**: Cross-repository coordination, dependency management, and workspace organization
**Plus a Unified Tool Registry** that seamlessly combines:
- Native coordination tools (register_agent, get_next_task, etc.)
- Proxied MCP tools from external servers (read_file, search_memory, etc.)
- VS Code integration tools (get_active_editor, run_command, etc.)
Instead of agents conflicting over files or duplicating work, they connect through a single MCP interface that automatically routes tool calls, tracks all operations as coordinated tasks, and maintains real-time communication via personal agent inboxes and shared task boards.
**Key Features:**
- **🤖 Multi-Agent Coordination**: Register multiple AI agents (GitHub Copilot, Claude, etc.) with different capabilities
- **<2A> Unified MCP Proxy**: Single MCP server that manages and unifies multiple external MCP servers
- **📡 External Server Management**: Automatically starts, monitors, and manages MCP servers defined in `mcp_servers.json`
- **🛠️ Universal Tool Registry**: Combines tools from all external servers with native coordination tools
- **🎯 Intelligent Tool Routing**: Automatically routes tool calls to the appropriate server or handles natively
- **📝 Automatic Task Tracking**: Every tool usage becomes a tracked task with agent coordination
- **⚡ Real-Time Communication**: Agents can communicate and share progress via heartbeat system
- **🔌 Dynamic Tool Discovery**: Automatically discovers new tools when external servers start/restart
- **🎮 Cross-Codebase Support**: Coordinate work across multiple repositories and projects
- **🔌 MCP Standard Compliance**: Works with any MCP-compatible AI agent or tool
## 🚀 How It Works
```ascii
┌────────────────────────────┐
│AI AGENTS & TOOLS CONNECTION│
└────────────────────────────┘
Agent 1 (Purple Zebra) Agent 2(Yellow Elephant) Agent N (...)
│ │ │
└────────────MCP Protocol┼(Single Interface)──────────┘
┌───────────────────────────────┴──────────────────────────────────┐
│ AGENT COORDINATOR (Unified MCP Server) │
├──────────────────────────────────────────────────────────────────┤
│ ┌─────────────────┐ ┌─────────────────┐ ┌──────────────────┐ │
│ │ Task Registry │ │ Agent Manager │ │Codebase Registry │ │
│ ├─────────────────┤ ├─────────────────┤ ├──────────────────┤ │
│ │• Task Queuing │ │• Registration │ │• Cross-Repo │ │
│ │• Agent Matching │ │• Heartbeat │ │• Dependencies │ │
│ │• Auto-Tracking │ │• Capabilities │ │• Workspace Mgmt │ │
│ └─────────────────┘ └─────────────────┘ └──────────────────┘ │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ UNIFIED TOOL REGISTRY │ │
│ ├─────────────────────────────────────────────────────────────┤ │
│ │ Native Tools: register_agent, get_next_task, │ ╞═══════════════════════════════════╕
│ │ create_task_set, complete_task, ... │ │ │
│ │ Proxied MCP Tools: read_file, write_file, │ │ ┍━━━━━━━━━━━┷━━━━━━━━━━━┑
│ │ search_memory, get_docs, ... │ │ │ Task Board │
│ │ VS Code Tools: get_active_editor, set_selection, │ │ ┏━━━━━━━━━━━━━━━━━━━━┓┝━━━━━━━━━━━┳━━━━━━━━━━━┥ ┏━━━━━━━━━━━━━━━━━━━━┓
│ │ get_workspace_folders, run_command, ... │ │ ┃ Agent 1 INBOX ┃│ Agent 1 Q ┃ Agent 2 Q │ ┃ Agent 2 INBOX ┃
│ ├─────────────────────────────────────────────────────────────┤ │ ┣━━━━━━━━━━━━━━━━━━━━┫┝━━━━━━━━━━━╋━━━━━━━━━━━┥ ┣━━━━━━━━━━━━━━━━━━━━┫
│ │ Routes to appropriate server or handles natively │ │ ┃ current: task 3 ┃│ ✓ Task 1 ┃ ✓ Task 1 │ ┃ current: task 2 ┃
│ │ Configure MCP Servers to run via MCP_TOOLS_FILE │ │ ┃ [ complete task ] ┣┥ ✓ Task 2 ┃ ➔ Task 2 ┝━┫ [ complete task ] ┃<─┐
│ └─────────────────────────────────────────────────────────────┘ │ ┗━━━━━━━━━━━━━━━━━━━━┛│ ➔ Task 3 ┃ … Task 3 │ ┗━━━━━━━━━━━━━━━━━━━━┛ │
└─────────────────────────────────┬────────────────────────────────┘ ┝━━━━━━━━━━━╋━━━━━━━━━━━┥ │
│ │ Agent 3 Q ┃ Agent 4 Q │ ┏━━━━━━━━━━━━━━━━━━━━┓ │
│ ┝━━━━━━━━━━━╋━━━━━━━━━━━┥ ┃ Agent 4 INBOX ┃<─┤ Personal inboxes
│ │ ✓ Task 1 ┃ ➔ Task 1 │ ┣━━━━━━━━━━━━━━━━━━━━┫ │
│ │ ✓ Task 2 ┃ … Task 2 │ ┃ current: task 2 ┃ │
┌─────────────────────────────────┴─────────────────────────────────────┐ │ ✓ Task 3 ┃ … Task 3 ┝━┫ [ complete task ] ┃ │
│ EXTERNAL MCP SERVERS │ ┕━━━━━┳━━━━━┻━━━━━━━━━━━┙ ┗━━━━━━━━━━━━━━━━━━━━┛ │
└──────────────┬─────────┬─────────┬─────────┬─────────┬─────────┬──────┤ ┏━━━━━━━━━━┻━━━━━━━━━┓ │
│ │ │ │ │ │ │ │ ┃ Agent 3 INBOX ┃<━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┙
┌────┴───┐ │ ┌────┴───┐ │ ┌────┴───┐ │ ┌────┴───┐ │ ┣━━━━━━━━━━━━━━━━━━━━┫
│ MCP 1 │ │ │ MCP 2 │ │ │ MCP 3 │ │ │ MCP 4 │ │ ┃ current: none ┃
├────────┤ │ ├────────┤ │ ├────────┤ │ ├────────┤ │ ┃ [ view history ] ┃
│• tool 1│ │ │• tool 1│ │ │• tool 1│ │ │• tool 1│ │ ┗━━━━━━━━━━━━━━━━━━━━┛
│• tool 2│ │ │• tool 2│ │ │• tool 2│ │ │• tool 2│ │
│• tool 3│┌────┴───┐│• tool 3│┌────┴───┐│• tool 3│┌────┴───┐│• tool 3│┌─┴──────┐
└────────┘│ MCP 5 │└────────┘│ MCP 6 │└────────┘│ MCP 7 │└────────┘│ MCP 8 │
├────────┤ ├────────┤ ├────────┤ ├────────┤
│• tool 1│ │• tool 1│ │• tool 1│ │• tool 1│
│• tool 2│ │• tool 2│ │• tool 2│ │• tool 2│
│• tool 3│ │• tool 3│ │• tool 3│ │• tool 3│
└────────┘ └────────┘ └────────┘ └────────┘
🔥 WHAT HAPPENS:
1. Agent Coordinator reads mcp_servers.json config
2. Spawns & initializes all external MCP servers
3. Discovers tools from each server via MCP protocol
4. Builds unified tool registry (native + external)
5. Presents single MCP interface to AI agents
6. Routes tool calls to appropriate servers
7. Automatically tracks all operations as tasks
8. Maintains heartbeat & coordination across agents
```
## 🔧 MCP Server Management & Unified Tool Registry
Agent Coordinator acts as a **unified MCP proxy server** that manages multiple external MCP servers while providing its own coordination capabilities. This creates a single, powerful interface for AI agents to access hundreds of tools seamlessly.
### 📡 External Server Management
The coordinator automatically manages external MCP servers based on configuration in `mcp_servers.json`:
```json
{
"servers": {
"mcp_filesystem": {
"type": "stdio",
"command": "bunx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/home/ra"],
"auto_restart": true,
"description": "Filesystem operations server"
},
"mcp_memory": {
"type": "stdio",
"command": "bunx",
"args": ["-y", "@modelcontextprotocol/server-memory"],
"auto_restart": true,
"description": "Memory and knowledge graph server"
},
"mcp_figma": {
"type": "http",
"url": "http://127.0.0.1:3845/mcp",
"auto_restart": true,
"description": "Figma design integration server"
}
},
"config": {
"startup_timeout": 30000,
"heartbeat_interval": 10000,
"auto_restart_delay": 1000,
"max_restart_attempts": 3
}
}
```
**Server Lifecycle Management:**
1. **🚀 Startup**: Reads config and spawns each external server process
2. **🔍 Discovery**: Sends MCP `initialize` and `tools/list` requests to discover available tools
3. **📋 Registration**: Adds discovered tools to the unified tool registry
4. **💓 Monitoring**: Continuously monitors server health and heartbeat
5. **🔄 Auto-Restart**: Automatically restarts failed servers (if configured)
6. **🛡️ Cleanup**: Properly terminates processes and cleans up resources on shutdown
### 🛠️ Unified Tool Registry
The coordinator combines tools from multiple sources into a single, coherent interface:
**Native Coordination Tools:**
- `register_agent` - Register agents with capabilities
- `create_task` - Create coordination tasks
- `get_next_task` - Get assigned tasks
- `complete_task` - Mark tasks complete
- `get_task_board` - View all agent status
- `heartbeat` - Maintain agent liveness
**External Server Tools (Auto-Discovered):**
- **Filesystem**: `read_file`, `write_file`, `list_directory`, `search_files`
- **Memory**: `search_nodes`, `store_memory`, `recall_information`
- **Context7**: `get-library-docs`, `search-docs`, `get-library-info`
- **Figma**: `get_code`, `get_designs`, `fetch_assets`
- **Sequential Thinking**: `sequentialthinking`, `analyze_problem`
- **VS Code**: `run_command`, `install_extension`, `open_file`, `create_task`
**Dynamic Discovery Process:**
```ascii
┌─────────────────┐ MCP Protocol ┌─────────────────┐
│ Agent │ ──────────────────▶│ Agent │
│ Coordinator │ │ Coordinator │
│ │ initialize │ │
│ 1. Starts │◀───────────────── │ 2. Responds │
│ External │ │ with info │
│ Server │ tools/list │ │
│ │ ──────────────────▶│ 3. Returns │
│ 4. Registers │ │ tool list │
│ Tools │◀───────────────── │ │
└─────────────────┘ └─────────────────┘
```
### 🎯 Intelligent Tool Routing
When an AI agent calls a tool, the coordinator intelligently routes the request:
**Routing Logic:**
1. **Native Tools**: Handled directly by Agent Coordinator modules
2. **External Tools**: Routed to the appropriate external MCP server
3. **VS Code Tools**: Routed to integrated VS Code Tool Provider
4. **Unknown Tools**: Return helpful error with available alternatives
**Automatic Task Tracking:**
- Every tool call automatically creates or updates agent tasks
- Maintains context of what agents are working on
- Provides visibility into cross-agent coordination
- Enables intelligent task distribution and conflict prevention
**Example Tool Call Flow:**
```bash
Agent calls "read_file" → Coordinator routes to filesystem server →
Updates agent task → Sends heartbeat → Returns file content
```
## 🛠️ Prerequisites
Choose one of these installation methods:
### Option 1: Docker (Recommended - No Elixir Installation Required)
- **Docker**: 20.10+ and Docker Compose
- **Node.js**: 18+ (for external MCP servers via bun)
### Option 2: Manual Installation
- **Elixir**: 1.16+ with OTP 26+
- **Mix**: Comes with Elixir installation
- **Node.js**: 18+ (for external MCP servers via bun)
## ⚡ Quick Start
### Option A: Docker Setup (Easiest)
#### 1. Get the Code
```bash
git clone https://github.com/your-username/agent_coordinator.git
cd agent_coordinator
```
#### 2. Run with Docker Compose
```bash
# Start the full stack (MCP server + NATS + monitoring)
docker-compose up -d
# Or start just the MCP server
docker-compose up agent-coordinator
# Check logs
docker-compose logs -f agent-coordinator
```
#### 3. Configuration
Edit `mcp_servers.json` to configure external MCP servers, then restart:
```bash
docker-compose restart agent-coordinator
```
### Option B: Manual Setup
#### 1. Get the Code
```bash
git clone https://github.com/your-username/agent_coordinator.git
cd agent_coordinator
mix deps.get
```
#### 2. Start the MCP Server
```bash
# Start the MCP server directly
./scripts/mcp_launcher.sh
# Or in development mode
mix run --no-halt
```
### 3. Configure Your AI Tools
#### For Docker Setup
If using Docker, the MCP server is available at the container's stdio interface. Add this to your VS Code `settings.json`:
```json
{
"github.copilot.advanced": {
"mcp": {
"servers": {
"agent-coordinator": {
"command": "docker",
"args": ["exec", "-i", "agent-coordinator", "/app/scripts/mcp_launcher.sh"],
"env": {
"MIX_ENV": "prod"
}
}
}
}
}
}
```
#### For Manual Setup
Add this to your VS Code `settings.json`:
```json
{
"github.copilot.advanced": {
"mcp": {
"servers": {
"agent-coordinator": {
"command": "/path/to/agent_coordinator/scripts/mcp_launcher.sh",
"args": [],
"env": {
"MIX_ENV": "dev"
}
}
}
}
}
}
}
}
```
### 4. Test It Works
#### Docker Testing
```bash
# Test with Docker
docker-compose exec agent-coordinator /app/bin/agent_coordinator ping
# Run example (if available in container)
docker-compose exec agent-coordinator mix run examples/full_workflow_demo.exs
# View logs
docker-compose logs -f agent-coordinator
```
#### Manual Testing
```bash
# Run the demo to see it in action
mix run examples/full_workflow_demo.exs
```
## 🐳 Docker Usage Guide
### Available Docker Commands
#### Basic Operations
```bash
# Build the image
docker build -t agent-coordinator .
# Run standalone container
docker run -d --name agent-coordinator -p 4000:4000 agent-coordinator
# Run with custom config
docker run -d \
-v ./mcp_servers.json:/app/mcp_servers.json:ro \
-p 4000:4000 \
agent-coordinator
```
#### Docker Compose Operations
```bash
# Start full stack
docker-compose up -d
# Start only agent coordinator
docker-compose up -d agent-coordinator
# View logs
docker-compose logs -f agent-coordinator
# Restart after config changes
docker-compose restart agent-coordinator
# Stop everything
docker-compose down
# Remove volumes (reset data)
docker-compose down -v
```
#### Development with Docker
```bash
# Start in development mode
docker-compose -f docker-compose.yml -f docker-compose.dev.yml up
# Interactive shell for debugging
docker-compose exec agent-coordinator bash
# Run tests in container
docker-compose exec agent-coordinator mix test
# Watch logs during development
docker-compose logs -f
```
### Environment Variables
Configure the container using environment variables:
```bash
# docker-compose.override.yml example
version: '3.8'
services:
agent-coordinator:
environment:
- MIX_ENV=prod
- NATS_HOST=nats
- NATS_PORT=4222
- LOG_LEVEL=info
```
### Custom Configuration
#### External MCP Servers
Mount your own `mcp_servers.json`:
```bash
docker run -d \
-v ./my-mcp-config.json:/app/mcp_servers.json:ro \
agent-coordinator
```
#### Persistent Data
```bash
docker run -d \
-v agent_data:/app/data \
-v nats_data:/data \
agent-coordinator
```
### Monitoring & Health Checks
#### Container Health
```bash
# Check container health
docker-compose ps
# Health check details
docker inspect --format='{{json .State.Health}}' agent-coordinator
# Manual health check
docker-compose exec agent-coordinator /app/bin/agent_coordinator ping
```
#### NATS Monitoring
Access NATS monitoring dashboard:
```bash
# Start with monitoring profile
docker-compose --profile monitoring up -d
# Access dashboard at http://localhost:8080
open http://localhost:8080
```
### Troubleshooting
#### Common Issues
```bash
# Check container logs
docker-compose logs agent-coordinator
# Check NATS connectivity
docker-compose exec agent-coordinator nc -z nats 4222
# Restart stuck container
docker-compose restart agent-coordinator
# Reset everything
docker-compose down -v && docker-compose up -d
```
#### Performance Tuning
```bash
# Allocate more memory
docker-compose up -d --scale agent-coordinator=1 \
--memory=1g --cpus="2.0"
```
## 🎮 How to Use
Once your AI agents are connected via MCP, they can:
### Register as an Agent
```bash
# An agent identifies itself with capabilities
register_agent("GitHub Copilot", ["coding", "testing"], codebase_id: "my-project")
```
### Create Tasks
```bash
# Tasks are created with requirements
create_task("Fix login bug", "Authentication fails on mobile",
priority: "high",
required_capabilities: ["coding", "debugging"]
)
```
### Coordinate Automatically
The coordinator automatically:
- **Matches** tasks to agents based on capabilities
- **Queues** tasks when no suitable agents are available
- **Tracks** agent heartbeats to ensure they're still working
- **Handles** cross-codebase tasks that span multiple repositories
### Available MCP Tools
All MCP-compatible AI agents get these tools automatically:
| Tool | Purpose |
|------|---------|
| `register_agent` | Register an agent with capabilities |
| `create_task` | Create a new task with requirements |
| `get_next_task` | Get the next task assigned to an agent |
| `complete_task` | Mark current task as completed |
| `get_task_board` | View all agents and their status |
| `heartbeat` | Send agent heartbeat to stay active |
| `register_codebase` | Register a new codebase/repository |
| `create_cross_codebase_task` | Create tasks spanning multiple repos |
## 🧪 Development & Testing
### Running Tests
```bash
# Run all tests
mix test
# Run with coverage
mix test --cover
# Try the examples
mix run examples/full_workflow_demo.exs
mix run examples/auto_heartbeat_demo.exs
```
### Code Quality
```bash
# Format code
mix format
# Run static analysis
mix credo
# Type checking
mix dialyzer
```
## 📁 Project Structure
```text
agent_coordinator/
├── lib/
│ ├── agent_coordinator.ex # Main module
│ └── agent_coordinator/
│ ├── mcp_server.ex # MCP protocol implementation
│ ├── task_registry.ex # Task management
│ ├── agent.ex # Agent management
│ ├── codebase_registry.ex # Multi-repository support
│ └── application.ex # Application supervisor
├── examples/ # Working examples
├── test/ # Test suite
├── scripts/ # Helper scripts
└── docs/ # Technical documentation
├── README.md # Documentation index
├── AUTO_HEARTBEAT.md # Unified MCP server details
├── VSCODE_TOOL_INTEGRATION.md # VS Code integration
└── LANGUAGE_IMPLEMENTATIONS.md # Alternative language guides
```
## 🤔 Why This Design?
**The Problem**: Multiple AI agents working on the same codebase step on each other, duplicate work, or create conflicts.
**The Solution**: A coordination layer that:
- Lets agents register their capabilities
- Intelligently distributes tasks
- Tracks progress and prevents conflicts
- Scales across multiple repositories
**Why Elixir?**: Built-in concurrency, fault tolerance, and excellent for coordination systems.
## 🚀 Alternative Implementations
While this Elixir version works great, you might want to consider these languages for broader adoption:
### Go Implementation
- **Pros**: Single binary deployment, great performance, large community
- **Cons**: More verbose concurrency patterns
- **Best for**: Teams wanting simple deployment and good performance
### Python Implementation
- **Pros**: Huge ecosystem, familiar to most developers, excellent tooling
- **Cons**: GIL limitations for true concurrency
- **Best for**: AI/ML teams already using Python ecosystem
### Rust Implementation
- **Pros**: Maximum performance, memory safety, growing adoption
- **Cons**: Steeper learning curve, smaller ecosystem
- **Best for**: Performance-critical deployments
### Node.js Implementation
- **Pros**: JavaScript familiarity, event-driven nature fits coordination
- **Cons**: Single-threaded limitations, callback complexity
- **Best for**: Web teams already using Node.js
## 🤝 Contributing
Contributions are welcome! Here's how:
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed guidelines.
## 📄 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🙏 Acknowledgments
- [Model Context Protocol](https://modelcontextprotocol.io/) for the agent communication standard
- [Elixir](https://elixir-lang.org/) community for the excellent ecosystem
- AI development teams pushing the boundaries of collaborative coding
---
**Agent Coordinator** - Making AI agents work together, not against each other.