# Agent Coordinator A **Model Context Protocol (MCP) server** that enables multiple AI agents to coordinate their work seamlessly across codebases without conflicts. Built with Elixir for reliability and fault tolerance. ## ๐ŸŽฏ What is Agent Coordinator? Agent Coordinator is a **MCP proxy server** that enables multiple AI agents to collaborate seamlessly without conflicts. As shown in the architecture diagram above, it acts as a **single MCP interface** that proxies ALL tool calls through itself, ensuring every agent maintains full project awareness while the coordinator tracks real-time agent presence. **The coordinator operates as a transparent proxy layer:** - **Single Interface**: All agents connect to one MCP server (the coordinator) - **Proxy Architecture**: Every tool call flows through the coordinator to external MCP servers - **Presence Tracking**: Each proxied tool call updates agent heartbeat and task status - **Project Awareness**: All agents see the same unified view of project state through the proxy **This proxy design orchestrates four core components:** - **Task Registry**: Intelligent task queuing, agent matching, and automatic progress tracking - **Agent Manager**: Agent registration, heartbeat monitoring, and capability-based assignment - **Codebase Registry**: Cross-repository coordination, dependency management, and workspace organization - **Unified Tool Registry**: Seamlessly proxies external MCP tools while adding coordination capabilities Instead of agents conflicting over files or duplicating work, they connect through a **single MCP proxy interface** that routes ALL tool calls through the coordinator. This ensures every tool usage updates agent presence, tracks coordinated tasks, and maintains real-time project awareness across all agents via shared task boards and agent inboxes. **Key Features:** - **๐Ÿ”„ MCP Proxy Architecture**: Single server that proxies ALL external MCP servers for unified agent access - **๐Ÿ‘๏ธ Real-Time Activity Tracking**: Live visibility into agent activities: "Reading file.ex", "Editing main.py", "Sequential thinking" - **๐Ÿ“ก Real-Time Presence Tracking**: Every tool call updates agent status and project awareness - **๐Ÿ“ File-Level Coordination**: Track exactly which files each agent is working on to prevent conflicts - **๐Ÿ“œ Activity History**: Rolling log of recent agent actions with timestamps and file details - **๐Ÿค– Multi-Agent Coordination**: Register multiple AI agents (GitHub Copilot, Claude, etc.) with different capabilities - **๐ŸŽฏ Transparent Tool Routing**: Automatically routes tool calls to appropriate external servers while tracking usage - **๐Ÿ“ Automatic Task Creation**: Every tool usage becomes a tracked task with agent coordination context - **โšก Full Project Awareness**: All agents see unified project state through the proxy layer - **๐Ÿ“ก External Server Management**: Automatically starts, monitors, and manages MCP servers defined in `mcp_servers.json` - **๐Ÿ› ๏ธ Universal Tool Registry**: Proxies tools from all external servers while adding native coordination tools - **๐Ÿ”Œ Dynamic Tool Discovery**: Automatically discovers new tools when external servers start/restart - **๐ŸŽฎ Cross-Codebase Support**: Coordinate work across multiple repositories and projects - **๐Ÿ”Œ MCP Standard Compliance**: Works with any MCP-compatible AI agent or tool ## ๐Ÿš€ How It Works ![Agent Coordinator Architecture](docs/architecture-diagram.svg) **The Agent Coordinator acts as a transparent MCP proxy server** that routes ALL tool calls through itself to maintain agent presence and provide full project awareness. Every external MCP server is proxied through the coordinator, ensuring unified agent coordination. ### ๐Ÿ”„ Proxy Architecture Flow 1. **Agent Registration**: Multiple AI agents (Purple Zebra, Yellow Elephant, etc.) register with their capabilities 2. **External Server Discovery**: Coordinator automatically starts and discovers tools from external MCP servers 3. **Unified Proxy Interface**: All tools (native + external) are available through a single MCP interface 4. **Transparent Tool Routing**: ALL tool calls proxy through coordinator โ†’ external servers โ†’ coordinator โ†’ agents 5. **Presence Tracking**: Every proxied tool call updates agent heartbeat and task status 6. **Project Awareness**: All agents maintain unified project state through the proxy layer ## ๐Ÿ‘๏ธ Real-Time Activity Tracking - FANTASTIC Feature! ๐ŸŽ‰ **See exactly what every agent is doing in real-time!** The coordinator intelligently tracks and displays agent activities as they happen: ### ๐ŸŽฏ Live Activity Examples ```json { "agent_id": "github-copilot-purple-elephant", "name": "GitHub Copilot Purple Elephant", "current_activity": "Reading mix.exs", "current_files": ["/home/ra/agent_coordinator/mix.exs"], "activity_history": [ { "activity": "Reading mix.exs", "files": ["/home/ra/agent_coordinator/mix.exs"], "timestamp": "2025-09-06T16:41:09.193087Z" }, { "activity": "Sequential thinking: Analyzing the current codebase structure...", "files": [], "timestamp": "2025-09-06T16:41:05.123456Z" }, { "activity": "Editing agent.ex", "files": ["/home/ra/agent_coordinator/lib/agent_coordinator/agent.ex"], "timestamp": "2025-09-06T16:40:58.987654Z" } ] } ``` ### ๐Ÿš€ Activity Types Tracked - **๐Ÿ“‚ File Operations**: "Reading config.ex", "Editing main.py", "Writing README.md", "Creating new_feature.js" - **๐Ÿง  Thinking Activities**: "Sequential thinking: Analyzing the problem...", "Having a sequential thought..." - **๐Ÿ” Search Operations**: "Searching for 'function'", "Semantic search for 'authentication'" - **โšก Terminal Commands**: "Running: mix test...", "Checking terminal output" - **๐Ÿ› ๏ธ VS Code Actions**: "VS Code: set editor content", "Viewing active editor in VS Code" - **๐Ÿงช Testing**: "Running tests in user_test.exs", "Running all tests" - **๐Ÿ“Š Task Management**: "Creating task: Fix bug", "Getting next task", "Completing current task" - **๐ŸŒ Web Operations**: "Fetching 3 webpages", "Getting library docs for React" ### ๐ŸŽฏ Benefits - **๐Ÿšซ Prevent File Conflicts**: See which files are being edited by which agents - **๐Ÿ‘ฅ Coordinate Team Work**: Know when agents are working on related tasks - **๐Ÿ› Debug Agent Behavior**: Track what agents did before encountering issues - **๐Ÿ“ˆ Monitor Progress**: Watch real-time progress across multiple agents - **๐Ÿ”„ Optimize Workflows**: Identify bottlenecks and coordination opportunities **Every tool call automatically updates the agent's activity - no configuration needed!** ๐Ÿซก๐Ÿ˜ธ ### ๐Ÿ—๏ธ Architecture Components **Core Coordinator Components:** - **Task Registry**: Intelligent task queuing, agent matching, and progress tracking - **Agent Manager**: Registration, heartbeat monitoring, and capability-based assignment - **Codebase Registry**: Cross-repository coordination and workspace management - **Unified Tool Registry**: Combines native coordination tools with external MCP tools **External Integration:** - **MCP Servers**: Filesystem, Memory, Context7, Sequential Thinking, and more - **VS Code Integration**: Direct editor commands and workspace management - **Real-Time Dashboard**: Live task board showing agent status and progress **Example Proxy Tool Call Flow:** ```text Agent calls "read_file" โ†’ Coordinator proxies to filesystem server โ†’ Updates agent presence + task tracking โ†’ Returns file content to agent Result: All other agents now aware of the file access via task board ``` ## ๐Ÿ”ง MCP Server Management & Unified Tool Registry Agent Coordinator acts as a **unified MCP proxy server** that manages multiple external MCP servers while providing its own coordination capabilities. This creates a single, powerful interface for AI agents to access hundreds of tools seamlessly. ### ๐Ÿ“ก External Server Management The coordinator automatically manages external MCP servers based on configuration in `mcp_servers.json`: ```json { "servers": { "mcp_filesystem": { "type": "stdio", "command": "bunx", "args": ["-y", "@modelcontextprotocol/server-filesystem", "/home/ra"], "auto_restart": true, "description": "Filesystem operations server" }, "mcp_memory": { "type": "stdio", "command": "bunx", "args": ["-y", "@modelcontextprotocol/server-memory"], "auto_restart": true, "description": "Memory and knowledge graph server" }, "mcp_figma": { "type": "http", "url": "http://127.0.0.1:3845/mcp", "auto_restart": true, "description": "Figma design integration server" } }, "config": { "startup_timeout": 30000, "heartbeat_interval": 10000, "auto_restart_delay": 1000, "max_restart_attempts": 3 } } ``` **Server Lifecycle Management:** 1. **๐Ÿš€ Startup**: Reads config and spawns each external server process 2. **๐Ÿ” Discovery**: Sends MCP `initialize` and `tools/list` requests to discover available tools 3. **๐Ÿ“‹ Registration**: Adds discovered tools to the unified tool registry 4. **๐Ÿ’“ Monitoring**: Continuously monitors server health and heartbeat 5. **๐Ÿ”„ Auto-Restart**: Automatically restarts failed servers (if configured) 6. **๐Ÿ›ก๏ธ Cleanup**: Properly terminates processes and cleans up resources on shutdown ### ๐Ÿ› ๏ธ Unified Tool Registry The coordinator combines tools from multiple sources into a single, coherent interface: **Native Coordination Tools:** - `register_agent` - Register agents with capabilities - `create_task` - Create coordination tasks - `get_next_task` - Get assigned tasks - `complete_task` - Mark tasks complete - `get_task_board` - View all agent status - `heartbeat` - Maintain agent liveness **External Server Tools (Auto-Discovered):** - **Filesystem**: `read_file`, `write_file`, `list_directory`, `search_files` - **Memory**: `search_nodes`, `store_memory`, `recall_information` - **Context7**: `get-library-docs`, `search-docs`, `get-library-info` - **Figma**: `get_code`, `get_designs`, `fetch_assets` - **Sequential Thinking**: `sequentialthinking`, `analyze_problem` - **VS Code**: `run_command`, `install_extension`, `open_file`, `create_task` **Dynamic Discovery Process:** 1. **๐Ÿš€ Startup**: Agent Coordinator starts external MCP server process 2. **๐Ÿค Initialize**: Sends MCP `initialize` request โ†’ Server responds with capabilities 3. **๐Ÿ“‹ Discovery**: Sends `tools/list` request โ†’ Server returns available tools 4. **โœ… Registration**: Adds discovered tools to unified tool registry This process repeats automatically when servers restart or new servers are added. ### ๐ŸŽฏ Intelligent Tool Routing When an AI agent calls a tool, the coordinator intelligently routes the request: **Routing Logic:** 1. **Native Tools**: Handled directly by Agent Coordinator modules 2. **External Tools**: Routed to the appropriate external MCP server 3. **VS Code Tools**: Routed to integrated VS Code Tool Provider 4. **Unknown Tools**: Return helpful error with available alternatives **Automatic Task Tracking:** - Every tool call automatically creates or updates agent tasks - Maintains context of what agents are working on - Provides visibility into cross-agent coordination - Enables intelligent task distribution and conflict prevention **Example Tool Call Flow:** ```bash Agent calls "read_file" โ†’ Coordinator routes to filesystem server โ†’ Updates agent task โ†’ Sends heartbeat โ†’ Returns file content ``` ## ๐Ÿ› ๏ธ Prerequisites Choose one of these installation methods: ### Option 1: Docker (Recommended - No Elixir Installation Required) - **Docker**: 20.10+ and Docker Compose - **Node.js**: 18+ (for external MCP servers via bun) ### Option 2: Manual Installation - **Elixir**: 1.16+ with OTP 26+ - **Mix**: Comes with Elixir installation - **Node.js**: 18+ (for external MCP servers via bun) ## โšก Quick Start ### Option A: Docker Setup (Easiest) #### 1. Get the Code ```bash git clone https://github.com/your-username/agent_coordinator.git cd agent_coordinator ``` #### 2. Run with Docker Compose ```bash # Start the full stack (MCP server + NATS + monitoring) docker-compose up -d # Or start just the MCP server docker-compose up agent-coordinator # Check logs docker-compose logs -f agent-coordinator ``` #### 3. Configuration Edit `mcp_servers.json` to configure external MCP servers, then restart: ```bash docker-compose restart agent-coordinator ``` ### Option B: Manual Setup #### 1. Clone the Repository ```bash git clone https://github.com/your-username/agent_coordinator.git cd agent_coordinator mix deps.get ``` #### 2. Start the MCP Server ```bash # Start the MCP server directly ./scripts/mcp_launcher.sh # Or in development mode mix run --no-halt ``` ### 3. Configure Your AI Tools #### For Docker Setup If using Docker, the MCP server is available at the container's stdio interface. Add this to your VS Code `settings.json`: ```json { "github.copilot.advanced": { "mcp": { "servers": { "agent-coordinator": { "command": "docker", "args": ["exec", "-i", "agent-coordinator", "/app/scripts/mcp_launcher.sh"], "env": { "MIX_ENV": "prod" } } } } } } ``` #### For Manual Setup Add this to your VS Code `settings.json`: ```json { "github.copilot.advanced": { "mcp": { "servers": { "agent-coordinator": { "command": "/path/to/agent_coordinator/scripts/mcp_launcher.sh", "args": [], "env": { "MIX_ENV": "dev" } } } } } } } } ``` ### 4. Test It Works #### Docker Testing ```bash # Test with Docker docker-compose exec agent-coordinator /app/bin/agent_coordinator ping # Run example (if available in container) docker-compose exec agent-coordinator mix run examples/full_workflow_demo.exs # View logs docker-compose logs -f agent-coordinator ``` #### Manual Testing ```bash # Run the demo to see it in action mix run examples/full_workflow_demo.exs ``` ## ๐Ÿณ Docker Usage Guide ### Available Docker Commands #### Basic Operations ```bash # Build the image docker build -t agent-coordinator . # Run standalone container docker run -d --name agent-coordinator -p 4000:4000 agent-coordinator # Run with custom config docker run -d \ -v ./mcp_servers.json:/app/mcp_servers.json:ro \ -p 4000:4000 \ agent-coordinator ``` #### Docker Compose Operations ```bash # Start full stack docker-compose up -d # Start only agent coordinator docker-compose up -d agent-coordinator # View logs docker-compose logs -f agent-coordinator # Restart after config changes docker-compose restart agent-coordinator # Stop everything docker-compose down # Remove volumes (reset data) docker-compose down -v ``` #### Development with Docker ```bash # Start in development mode docker-compose -f docker-compose.yml -f docker-compose.dev.yml up # Interactive shell for debugging docker-compose exec agent-coordinator bash # Run tests in container docker-compose exec agent-coordinator mix test # Watch logs during development docker-compose logs -f ``` ### Environment Variables Configure the container using environment variables: ```bash # docker-compose.override.yml example version: '3.8' services: agent-coordinator: environment: - MIX_ENV=prod - NATS_HOST=nats - NATS_PORT=4222 - LOG_LEVEL=info ``` ### Custom Configuration #### External MCP Servers Mount your own `mcp_servers.json`: ```bash docker run -d \ -v ./my-mcp-config.json:/app/mcp_servers.json:ro \ agent-coordinator ``` #### Persistent Data ```bash docker run -d \ -v agent_data:/app/data \ -v nats_data:/data \ agent-coordinator ``` ### Monitoring & Health Checks #### Container Health ```bash # Check container health docker-compose ps # Health check details docker inspect --format='{{json .State.Health}}' agent-coordinator # Manual health check docker-compose exec agent-coordinator /app/bin/agent_coordinator ping ``` #### NATS Monitoring Access NATS monitoring dashboard: ```bash # Start with monitoring profile docker-compose --profile monitoring up -d # Access dashboard at http://localhost:8080 open http://localhost:8080 ``` ### Troubleshooting #### Common Issues ```bash # Check container logs docker-compose logs agent-coordinator # Check NATS connectivity docker-compose exec agent-coordinator nc -z nats 4222 # Restart stuck container docker-compose restart agent-coordinator # Reset everything docker-compose down -v && docker-compose up -d ``` #### Performance Tuning ```bash # Allocate more memory docker-compose up -d --scale agent-coordinator=1 \ --memory=1g --cpus="2.0" ``` ## ๐ŸŽฎ How to Use Once your AI agents are connected via MCP, they can: ### Register as an Agent ```bash # An agent identifies itself with capabilities register_agent("GitHub Copilot", ["coding", "testing"], codebase_id: "my-project") ``` ### Create Tasks ```bash # Tasks are created with requirements create_task("Fix login bug", "Authentication fails on mobile", priority: "high", required_capabilities: ["coding", "debugging"] ) ``` ### Coordinate Automatically The coordinator automatically: - **Matches** tasks to agents based on capabilities - **Queues** tasks when no suitable agents are available - **Tracks** agent heartbeats to ensure they're still working - **Handles** cross-codebase tasks that span multiple repositories ### Available MCP Tools All MCP-compatible AI agents get these tools automatically: | Tool | Purpose | |------|---------| | `register_agent` | Register an agent with capabilities | | `create_task` | Create a new task with requirements | | `get_next_task` | Get the next task assigned to an agent | | `complete_task` | Mark current task as completed | | `get_task_board` | View all agents and their status | | `heartbeat` | Send agent heartbeat to stay active | | `register_codebase` | Register a new codebase/repository | | `create_cross_codebase_task` | Create tasks spanning multiple repos | ## ๐Ÿงช Development & Testing ### Running Tests ```bash # Run all tests mix test # Run with coverage mix test --cover # Try the examples mix run examples/full_workflow_demo.exs mix run examples/auto_heartbeat_demo.exs ``` ### Code Quality ```bash # Format code mix format # Run static analysis mix credo # Type checking mix dialyzer ``` ## ๐Ÿ“ Project Structure ```text agent_coordinator/ โ”œโ”€โ”€ lib/ โ”‚ โ”œโ”€โ”€ agent_coordinator.ex # Main module โ”‚ โ””โ”€โ”€ agent_coordinator/ โ”‚ โ”œโ”€โ”€ mcp_server.ex # MCP protocol implementation โ”‚ โ”œโ”€โ”€ task_registry.ex # Task management โ”‚ โ”œโ”€โ”€ agent.ex # Agent management โ”‚ โ”œโ”€โ”€ codebase_registry.ex # Multi-repository support โ”‚ โ””โ”€โ”€ application.ex # Application supervisor โ”œโ”€โ”€ examples/ # Working examples โ”œโ”€โ”€ test/ # Test suite โ”œโ”€โ”€ scripts/ # Helper scripts โ””โ”€โ”€ docs/ # Technical documentation โ”œโ”€โ”€ README.md # Documentation index โ”œโ”€โ”€ AUTO_HEARTBEAT.md # Unified MCP server details โ”œโ”€โ”€ VSCODE_TOOL_INTEGRATION.md # VS Code integration โ””โ”€โ”€ LANGUAGE_IMPLEMENTATIONS.md # Alternative language guides ``` ## ๐Ÿค” Why This Design? **The Problem**: Multiple AI agents working on the same codebase step on each other, duplicate work, or create conflicts. **The Solution**: A coordination layer that: - Lets agents register their capabilities - Intelligently distributes tasks - Tracks progress and prevents conflicts - Scales across multiple repositories **Why Elixir?**: Built-in concurrency, fault tolerance, and excellent for coordination systems. ## ๐Ÿš€ Alternative Implementations While this Elixir version works great, you might want to consider these languages for broader adoption: ### Go Implementation - **Pros**: Single binary deployment, great performance, large community - **Cons**: More verbose concurrency patterns - **Best for**: Teams wanting simple deployment and good performance ### Python Implementation - **Pros**: Huge ecosystem, familiar to most developers, excellent tooling - **Cons**: GIL limitations for true concurrency - **Best for**: AI/ML teams already using Python ecosystem ### Rust Implementation - **Pros**: Maximum performance, memory safety, growing adoption - **Cons**: Steeper learning curve, smaller ecosystem - **Best for**: Performance-critical deployments ### Node.js Implementation - **Pros**: JavaScript familiarity, event-driven nature fits coordination - **Cons**: Single-threaded limitations, callback complexity - **Best for**: Web teams already using Node.js ## ๐Ÿค Contributing Contributions are welcome! Here's how: 1. Fork the repository 2. Create your feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'Add some amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed guidelines. ## ๐Ÿ“„ License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## ๐Ÿ™ Acknowledgments - [Model Context Protocol](https://modelcontextprotocol.io/) for the agent communication standard - [Elixir](https://elixir-lang.org/) community for the excellent ecosystem - AI development teams pushing the boundaries of collaborative coding --- **Agent Coordinator** - Making AI agents work together, not against each other.