None of this is necessary
This commit is contained in:
398
README.md
398
README.md
@@ -2,17 +2,19 @@
|
||||
|
||||
A **Model Context Protocol (MCP) server** that enables multiple AI agents to coordinate their work seamlessly across codebases without conflicts. Built with Elixir for reliability and fault tolerance.
|
||||
|
||||
## 🎯 What is Agent Coordinator?
|
||||
## What is Agent Coordinator?
|
||||
|
||||
Agent Coordinator is a **MCP proxy server** that enables multiple AI agents to collaborate seamlessly without conflicts. As shown in the architecture diagram above, it acts as a **single MCP interface** that proxies ALL tool calls through itself, ensuring every agent maintains full project awareness while the coordinator tracks real-time agent presence.
|
||||
|
||||
**The coordinator operates as a transparent proxy layer:**
|
||||
|
||||
- **Single Interface**: All agents connect to one MCP server (the coordinator)
|
||||
- **Proxy Architecture**: Every tool call flows through the coordinator to external MCP servers
|
||||
- **Presence Tracking**: Each proxied tool call updates agent heartbeat and task status
|
||||
- **Project Awareness**: All agents see the same unified view of project state through the proxy
|
||||
|
||||
**This proxy design orchestrates four core components:**
|
||||
|
||||
- **Task Registry**: Intelligent task queuing, agent matching, and automatic progress tracking
|
||||
- **Agent Manager**: Agent registration, heartbeat monitoring, and capability-based assignment
|
||||
- **Codebase Registry**: Cross-repository coordination, dependency management, and workspace organization
|
||||
@@ -22,28 +24,28 @@ Instead of agents conflicting over files or duplicating work, they connect throu
|
||||
|
||||
**Key Features:**
|
||||
|
||||
- **🔄 MCP Proxy Architecture**: Single server that proxies ALL external MCP servers for unified agent access
|
||||
- **👁️ Real-Time Activity Tracking**: Live visibility into agent activities: "Reading file.ex", "Editing main.py", "Sequential thinking"
|
||||
- **📡 Real-Time Presence Tracking**: Every tool call updates agent status and project awareness
|
||||
- **📁 File-Level Coordination**: Track exactly which files each agent is working on to prevent conflicts
|
||||
- **📜 Activity History**: Rolling log of recent agent actions with timestamps and file details
|
||||
- **🤖 Multi-Agent Coordination**: Register multiple AI agents (GitHub Copilot, Claude, etc.) with different capabilities
|
||||
- **🎯 Transparent Tool Routing**: Automatically routes tool calls to appropriate external servers while tracking usage
|
||||
- **📝 Automatic Task Creation**: Every tool usage becomes a tracked task with agent coordination context
|
||||
- **⚡ Full Project Awareness**: All agents see unified project state through the proxy layer
|
||||
- **📡 External Server Management**: Automatically starts, monitors, and manages MCP servers defined in `mcp_servers.json`
|
||||
- **🛠️ Universal Tool Registry**: Proxies tools from all external servers while adding native coordination tools
|
||||
- **🔌 Dynamic Tool Discovery**: Automatically discovers new tools when external servers start/restart
|
||||
- **🎮 Cross-Codebase Support**: Coordinate work across multiple repositories and projects
|
||||
- **🔌 MCP Standard Compliance**: Works with any MCP-compatible AI agent or tool
|
||||
- **MCP Proxy Architecture**: Single server that proxies ALL external MCP servers for unified agent access
|
||||
- **Real-Time Activity Tracking**: Live visibility into agent activities: "Reading file.ex", "Editing main.py", "Sequential thinking"
|
||||
- **Real-Time Presence Tracking**: Every tool call updates agent status and project awareness
|
||||
- **File-Level Coordination**: Track exactly which files each agent is working on to prevent conflicts
|
||||
- **Activity History**: Rolling log of recent agent actions with timestamps and file details
|
||||
- **Multi-Agent Coordination**: Register multiple AI agents (GitHub Copilot, Claude, etc.) with different capabilities
|
||||
- **Transparent Tool Routing**: Automatically routes tool calls to appropriate external servers while tracking usage
|
||||
- **Automatic Task Creation**: Every tool usage becomes a tracked task with agent coordination context
|
||||
- **Full Project Awareness**: All agents see unified project state through the proxy layer
|
||||
- **External Server Management**: Automatically starts, monitors, and manages MCP servers defined in `mcp_servers.json`
|
||||
- **Universal Tool Registry**: Proxies tools from all external servers while adding native coordination tools
|
||||
- **Dynamic Tool Discovery**: Automatically discovers new tools when external servers start/restart
|
||||
- **Cross-Codebase Support**: Coordinate work across multiple repositories and projects
|
||||
- **MCP Standard Compliance**: Works with any MCP-compatible AI agent or tool
|
||||
|
||||
## 🚀 How It Works
|
||||
## Overview
|
||||
|
||||

|
||||
|
||||
**The Agent Coordinator acts as a transparent MCP proxy server** that routes ALL tool calls through itself to maintain agent presence and provide full project awareness. Every external MCP server is proxied through the coordinator, ensuring unified agent coordination.
|
||||
|
||||
### 🔄 Proxy Architecture Flow
|
||||
### Proxy Architecture Flow
|
||||
|
||||
1. **Agent Registration**: Multiple AI agents (Purple Zebra, Yellow Elephant, etc.) register with their capabilities
|
||||
2. **External Server Discovery**: Coordinator automatically starts and discovers tools from external MCP servers
|
||||
@@ -52,11 +54,11 @@ Instead of agents conflicting over files or duplicating work, they connect throu
|
||||
5. **Presence Tracking**: Every proxied tool call updates agent heartbeat and task status
|
||||
6. **Project Awareness**: All agents maintain unified project state through the proxy layer
|
||||
|
||||
## 👁️ Real-Time Activity Tracking - FANTASTIC Feature! 🎉
|
||||
## Real-Time Activity Tracking - FANTASTIC Feature!
|
||||
|
||||
**See exactly what every agent is doing in real-time!** The coordinator intelligently tracks and displays agent activities as they happen:
|
||||
|
||||
### 🎯 Live Activity Examples
|
||||
### Live Activity Examples
|
||||
|
||||
```json
|
||||
{
|
||||
@@ -172,12 +174,12 @@ The coordinator automatically manages external MCP servers based on configuratio
|
||||
|
||||
**Server Lifecycle Management:**
|
||||
|
||||
1. **🚀 Startup**: Reads config and spawns each external server process
|
||||
2. **🔍 Discovery**: Sends MCP `initialize` and `tools/list` requests to discover available tools
|
||||
3. **📋 Registration**: Adds discovered tools to the unified tool registry
|
||||
4. **💓 Monitoring**: Continuously monitors server health and heartbeat
|
||||
5. **🔄 Auto-Restart**: Automatically restarts failed servers (if configured)
|
||||
6. **🛡️ Cleanup**: Properly terminates processes and cleans up resources on shutdown
|
||||
1. **Startup**: Reads config and spawns each external server process
|
||||
2. **Discovery**: Sends MCP `initialize` and `tools/list` requests to discover available tools
|
||||
3. **Registration**: Adds discovered tools to the unified tool registry
|
||||
4. **Monitoring**: Continuously monitors server health and heartbeat
|
||||
5. **Auto-Restart**: Automatically restarts failed servers (if configured)
|
||||
6. **Cleanup**: Properly terminates processes and cleans up resources on shutdown
|
||||
|
||||
### 🛠️ Unified Tool Registry
|
||||
|
||||
@@ -203,14 +205,14 @@ The coordinator combines tools from multiple sources into a single, coherent int
|
||||
|
||||
**Dynamic Discovery Process:**
|
||||
|
||||
1. **🚀 Startup**: Agent Coordinator starts external MCP server process
|
||||
2. **🤝 Initialize**: Sends MCP `initialize` request → Server responds with capabilities
|
||||
3. **📋 Discovery**: Sends `tools/list` request → Server returns available tools
|
||||
4. **✅ Registration**: Adds discovered tools to unified tool registry
|
||||
1. **Startup**: Agent Coordinator starts external MCP server process
|
||||
2. **Initialize**: Sends MCP `initialize` request → Server responds with capabilities
|
||||
3. **Discovery**: Sends `tools/list` request → Server returns available tools
|
||||
4. **Registration**: Adds discovered tools to unified tool registry
|
||||
|
||||
This process repeats automatically when servers restart or new servers are added.
|
||||
|
||||
### 🎯 Intelligent Tool Routing
|
||||
### Intelligent Tool Routing
|
||||
|
||||
When an AI agent calls a tool, the coordinator intelligently routes the request:
|
||||
|
||||
@@ -235,7 +237,7 @@ Agent calls "read_file" → Coordinator routes to filesystem server →
|
||||
Updates agent task → Sends heartbeat → Returns file content
|
||||
```
|
||||
|
||||
## 🛠️ Prerequisites
|
||||
## Prerequisites
|
||||
|
||||
Choose one of these installation methods:
|
||||
|
||||
@@ -345,339 +347,5 @@ Add this to your VS Code `settings.json`:
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 4. Test It Works
|
||||
|
||||
#### Docker Testing
|
||||
|
||||
```bash
|
||||
# Test with Docker
|
||||
docker-compose exec agent-coordinator /app/bin/agent_coordinator ping
|
||||
|
||||
# Run example (if available in container)
|
||||
docker-compose exec agent-coordinator mix run examples/full_workflow_demo.exs
|
||||
|
||||
# View logs
|
||||
docker-compose logs -f agent-coordinator
|
||||
```
|
||||
|
||||
#### Manual Testing
|
||||
|
||||
```bash
|
||||
# Run the demo to see it in action
|
||||
mix run examples/full_workflow_demo.exs
|
||||
```
|
||||
|
||||
## 🐳 Docker Usage Guide
|
||||
|
||||
### Available Docker Commands
|
||||
|
||||
#### Basic Operations
|
||||
|
||||
```bash
|
||||
# Build the image
|
||||
docker build -t agent-coordinator .
|
||||
|
||||
# Run standalone container
|
||||
docker run -d --name agent-coordinator -p 4000:4000 agent-coordinator
|
||||
|
||||
# Run with custom config
|
||||
docker run -d \
|
||||
-v ./mcp_servers.json:/app/mcp_servers.json:ro \
|
||||
-p 4000:4000 \
|
||||
agent-coordinator
|
||||
```
|
||||
|
||||
#### Docker Compose Operations
|
||||
|
||||
```bash
|
||||
# Start full stack
|
||||
docker-compose up -d
|
||||
|
||||
# Start only agent coordinator
|
||||
docker-compose up -d agent-coordinator
|
||||
|
||||
# View logs
|
||||
docker-compose logs -f agent-coordinator
|
||||
|
||||
# Restart after config changes
|
||||
docker-compose restart agent-coordinator
|
||||
|
||||
# Stop everything
|
||||
docker-compose down
|
||||
|
||||
# Remove volumes (reset data)
|
||||
docker-compose down -v
|
||||
```
|
||||
|
||||
#### Development with Docker
|
||||
|
||||
```bash
|
||||
# Start in development mode
|
||||
docker-compose -f docker-compose.yml -f docker-compose.dev.yml up
|
||||
|
||||
# Interactive shell for debugging
|
||||
docker-compose exec agent-coordinator bash
|
||||
|
||||
# Run tests in container
|
||||
docker-compose exec agent-coordinator mix test
|
||||
|
||||
# Watch logs during development
|
||||
docker-compose logs -f
|
||||
```
|
||||
|
||||
### Environment Variables
|
||||
|
||||
Configure the container using environment variables:
|
||||
|
||||
```bash
|
||||
# docker-compose.override.yml example
|
||||
version: '3.8'
|
||||
services:
|
||||
agent-coordinator:
|
||||
environment:
|
||||
- MIX_ENV=prod
|
||||
- NATS_HOST=nats
|
||||
- NATS_PORT=4222
|
||||
- LOG_LEVEL=info
|
||||
```
|
||||
|
||||
### Custom Configuration
|
||||
|
||||
#### External MCP Servers
|
||||
|
||||
Mount your own `mcp_servers.json`:
|
||||
|
||||
```bash
|
||||
docker run -d \
|
||||
-v ./my-mcp-config.json:/app/mcp_servers.json:ro \
|
||||
agent-coordinator
|
||||
```
|
||||
|
||||
#### Persistent Data
|
||||
|
||||
```bash
|
||||
docker run -d \
|
||||
-v agent_data:/app/data \
|
||||
-v nats_data:/data \
|
||||
agent-coordinator
|
||||
```
|
||||
|
||||
### Monitoring & Health Checks
|
||||
|
||||
#### Container Health
|
||||
|
||||
```bash
|
||||
# Check container health
|
||||
docker-compose ps
|
||||
|
||||
# Health check details
|
||||
docker inspect --format='{{json .State.Health}}' agent-coordinator
|
||||
|
||||
# Manual health check
|
||||
docker-compose exec agent-coordinator /app/bin/agent_coordinator ping
|
||||
```
|
||||
|
||||
#### NATS Monitoring
|
||||
|
||||
Access NATS monitoring dashboard:
|
||||
```bash
|
||||
# Start with monitoring profile
|
||||
docker-compose --profile monitoring up -d
|
||||
|
||||
# Access dashboard at http://localhost:8080
|
||||
open http://localhost:8080
|
||||
```
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
#### Common Issues
|
||||
|
||||
```bash
|
||||
# Check container logs
|
||||
docker-compose logs agent-coordinator
|
||||
|
||||
# Check NATS connectivity
|
||||
docker-compose exec agent-coordinator nc -z nats 4222
|
||||
|
||||
# Restart stuck container
|
||||
docker-compose restart agent-coordinator
|
||||
|
||||
# Reset everything
|
||||
docker-compose down -v && docker-compose up -d
|
||||
```
|
||||
|
||||
#### Performance Tuning
|
||||
|
||||
```bash
|
||||
# Allocate more memory
|
||||
docker-compose up -d --scale agent-coordinator=1 \
|
||||
--memory=1g --cpus="2.0"
|
||||
```
|
||||
|
||||
## 🎮 How to Use
|
||||
|
||||
Once your AI agents are connected via MCP, they can:
|
||||
|
||||
### Register as an Agent
|
||||
|
||||
```bash
|
||||
# An agent identifies itself with capabilities
|
||||
register_agent("GitHub Copilot", ["coding", "testing"], codebase_id: "my-project")
|
||||
```
|
||||
|
||||
### Create Tasks
|
||||
|
||||
```bash
|
||||
# Tasks are created with requirements
|
||||
create_task("Fix login bug", "Authentication fails on mobile",
|
||||
priority: "high",
|
||||
required_capabilities: ["coding", "debugging"]
|
||||
)
|
||||
```
|
||||
|
||||
### Coordinate Automatically
|
||||
|
||||
The coordinator automatically:
|
||||
|
||||
- **Matches** tasks to agents based on capabilities
|
||||
- **Queues** tasks when no suitable agents are available
|
||||
- **Tracks** agent heartbeats to ensure they're still working
|
||||
- **Handles** cross-codebase tasks that span multiple repositories
|
||||
|
||||
### Available MCP Tools
|
||||
|
||||
All MCP-compatible AI agents get these tools automatically:
|
||||
|
||||
| Tool | Purpose |
|
||||
|------|---------|
|
||||
| `register_agent` | Register an agent with capabilities |
|
||||
| `create_task` | Create a new task with requirements |
|
||||
| `get_next_task` | Get the next task assigned to an agent |
|
||||
| `complete_task` | Mark current task as completed |
|
||||
| `get_task_board` | View all agents and their status |
|
||||
| `heartbeat` | Send agent heartbeat to stay active |
|
||||
| `register_codebase` | Register a new codebase/repository |
|
||||
| `create_cross_codebase_task` | Create tasks spanning multiple repos |
|
||||
|
||||
## 🧪 Development & Testing
|
||||
|
||||
### Running Tests
|
||||
|
||||
```bash
|
||||
# Run all tests
|
||||
mix test
|
||||
|
||||
# Run with coverage
|
||||
mix test --cover
|
||||
|
||||
# Try the examples
|
||||
mix run examples/full_workflow_demo.exs
|
||||
mix run examples/auto_heartbeat_demo.exs
|
||||
```
|
||||
|
||||
### Code Quality
|
||||
|
||||
```bash
|
||||
# Format code
|
||||
mix format
|
||||
|
||||
# Run static analysis
|
||||
mix credo
|
||||
|
||||
# Type checking
|
||||
mix dialyzer
|
||||
```
|
||||
|
||||
## 📁 Project Structure
|
||||
|
||||
```text
|
||||
agent_coordinator/
|
||||
├── lib/
|
||||
│ ├── agent_coordinator.ex # Main module
|
||||
│ └── agent_coordinator/
|
||||
│ ├── mcp_server.ex # MCP protocol implementation
|
||||
│ ├── task_registry.ex # Task management
|
||||
│ ├── agent.ex # Agent management
|
||||
│ ├── codebase_registry.ex # Multi-repository support
|
||||
│ └── application.ex # Application supervisor
|
||||
├── examples/ # Working examples
|
||||
├── test/ # Test suite
|
||||
├── scripts/ # Helper scripts
|
||||
└── docs/ # Technical documentation
|
||||
├── README.md # Documentation index
|
||||
├── AUTO_HEARTBEAT.md # Unified MCP server details
|
||||
├── VSCODE_TOOL_INTEGRATION.md # VS Code integration
|
||||
└── LANGUAGE_IMPLEMENTATIONS.md # Alternative language guides
|
||||
```
|
||||
|
||||
## 🤔 Why This Design?
|
||||
|
||||
**The Problem**: Multiple AI agents working on the same codebase step on each other, duplicate work, or create conflicts.
|
||||
|
||||
**The Solution**: A coordination layer that:
|
||||
|
||||
- Lets agents register their capabilities
|
||||
- Intelligently distributes tasks
|
||||
- Tracks progress and prevents conflicts
|
||||
- Scales across multiple repositories
|
||||
|
||||
**Why Elixir?**: Built-in concurrency, fault tolerance, and excellent for coordination systems.
|
||||
|
||||
## 🚀 Alternative Implementations
|
||||
|
||||
While this Elixir version works great, you might want to consider these languages for broader adoption:
|
||||
|
||||
### Go Implementation
|
||||
|
||||
- **Pros**: Single binary deployment, great performance, large community
|
||||
- **Cons**: More verbose concurrency patterns
|
||||
- **Best for**: Teams wanting simple deployment and good performance
|
||||
|
||||
### Python Implementation
|
||||
|
||||
- **Pros**: Huge ecosystem, familiar to most developers, excellent tooling
|
||||
- **Cons**: GIL limitations for true concurrency
|
||||
- **Best for**: AI/ML teams already using Python ecosystem
|
||||
|
||||
### Rust Implementation
|
||||
|
||||
- **Pros**: Maximum performance, memory safety, growing adoption
|
||||
- **Cons**: Steeper learning curve, smaller ecosystem
|
||||
- **Best for**: Performance-critical deployments
|
||||
|
||||
### Node.js Implementation
|
||||
|
||||
- **Pros**: JavaScript familiarity, event-driven nature fits coordination
|
||||
- **Cons**: Single-threaded limitations, callback complexity
|
||||
- **Best for**: Web teams already using Node.js
|
||||
|
||||
## 🤝 Contributing
|
||||
|
||||
Contributions are welcome! Here's how:
|
||||
|
||||
1. Fork the repository
|
||||
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
|
||||
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
|
||||
4. Push to the branch (`git push origin feature/amazing-feature`)
|
||||
5. Open a Pull Request
|
||||
|
||||
See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed guidelines.
|
||||
|
||||
## 📄 License
|
||||
|
||||
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
||||
|
||||
## 🙏 Acknowledgments
|
||||
|
||||
- [Model Context Protocol](https://modelcontextprotocol.io/) for the agent communication standard
|
||||
- [Elixir](https://elixir-lang.org/) community for the excellent ecosystem
|
||||
- AI development teams pushing the boundaries of collaborative coding
|
||||
|
||||
---
|
||||
|
||||
**Agent Coordinator** - Making AI agents work together, not against each other.
|
||||
|
||||
Reference in New Issue
Block a user